The RAG2 C-terminus and ATM protect genome integrity by controlling antigen receptor gene cleavage
نویسندگان
چکیده
Tight control of antigen-receptor gene rearrangement is required to preserve genome integrity and prevent the occurrence of leukaemia and lymphoma. Nonetheless, mistakes can happen, leading to the generation of aberrant rearrangements, such as Tcra/d-Igh inter-locus translocations that are a hallmark of ataxia telangiectasia-mutated (ATM) deficiency. Current evidence indicates that these translocations arise from the persistence of unrepaired breaks converging at different stages of thymocyte differentiation. Here we show that a defect in feedback control of RAG2 activity gives rise to bi-locus breaks and damage on Tcra/d and Igh in the same T cell at the same developmental stage, which provides a direct mechanism for generating these inter-locus rearrangements. Both the RAG2 C-terminus and ATM prevent bi-locus RAG-mediated cleavage through modulation of three-dimensional conformation (higher-order loops) and nuclear organization of the two loci. This limits the number of potential substrates for translocation and provides an important mechanism for protecting genome stability.
منابع مشابه
RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair.
XRCC4-like factor (XLF) functions in classical non-homologous end-joining (cNHEJ) but is dispensable for the repair of DNA double-strand breaks (DSBs) generated during V(D)J recombination. A long-standing hypothesis proposes that, in addition to its canonical nuclease activity, the RAG1/2 proteins participate in the DNA repair phase of V(D)J recombination. Here we show that in the context of RA...
متن کاملThe Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect
Many DNA lesions associated with lymphoid malignancies are linked to off-target cleavage by the RAG1/2 recombinase. However, off-target cleavage has mostly been analyzed in the context of DNA repair defects, confounding any mechanistic understanding of cleavage deregulation. We identified a conserved SQ phosphorylation site on RAG2 365 to 366 that is involved in feedback control of RAG cleavage...
متن کاملDeletion of the RAG2 C terminus leads to impaired lymphoid development in mice.
The recombination-activating gene (RAG)1 and RAG2 proteins comprise the lymphocyte-specific components of the V(D)J recombinase and are required for the assembly of antigen-receptor variable-region genes. A mutant truncated RAG2 protein ("core" RAG2) lacking the C-terminal 144 amino acids, together with core RAG1, is able to mediate the basic biochemical steps required for V(D)J recombination i...
متن کاملV(D)J Recombination: Modulation of RAG1 and RAG2 Cleavage Activity on 12/23 Substrates by Whole Cell Extract and DNA-bending Proteins
Antigen receptor gene rearrangement is directed by DNA motifs consisting of a conserved heptamer and nonamer separated by a nonconserved spacer of either 12 or 23 base pairs (12 or 23 recombination signal sequences [RSS]). V(D)J recombination requires that the rearranging DNA segments be flanked by RSSs of different spacer lengths, a phenomenon known as the 12/23 rule. Recent studies have shown...
متن کاملReal-time monitoring of RAG-catalyzed DNA cleavage unveils dynamic changes in coding end association with the coding end complex
During V(D)J recombination, the RAG1/2 recombinase is thought to play an active role in transferring newly excised recombination ends from the RAG post-cleavage complex (PCC) to the non-homologous end joining (NHEJ) machinery to promote appropriate antigen receptor gene assembly. However, this transfer mechanism is poorly understood, partly because of the technical difficulty in revealing weak ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013